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Abstract

Underactuated nonlinear systems are always equipped with less number of

actuators than the degree of freedom. This feature offers certain benefits like

reduction in weight and minimum energy usage. Majority of the robotic systems

(including aerial, underwater and ground robotics) are found to be

underactuated in nature. Therefore, research in such system is still quite

demanding and challenging. It is also worthy to mention that the underactuation

phenomenon, do not allow the direct design of control input as practiced in fully

actuated systems. Majority of the techniques in literature lags the robust

stabilization of underactuated mechanical systems.

In this work , the author suggests non-linear robust control techniques for

underactuated mechanical systems which includes sliding mode control, adaptive

backstepping, Input/Output feedback linearization. The proposed framework is

applicable to n-DOF underactuated mechanical systems.

Firstly, input/output feedback linearization control technique is proposed for

2DOF systems regarding matched uncertainties. Secondly, adaptive backstepping

algorithm is proposed for 2DOF systems. In the third scheme, the systems are

transformed using transformation and a standard SMC design is proposed

regarding 2DOF underactuated mechanical systems.

The first three strategies are applicable to 2DOF UMS systems. To overcome

this hurdle, finally the adaptive sliding mode control strategy for n-DOF systems

regarding the matched uncertainties is presented.eThe proposed control

techniques are verified for following underactuated mechanical systems: cart-pole

system, TORA (Translational Oscillator with Rotational Actuator), overhead

crane system and double inverted Pendulum, to achieve the improved

performance together with the added benefit of remarkable robustness to

uncertainties.
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Chapter 1

Introduction

This chapter presents the research work carried out in this thesis. First, the author

explains how inspiration for this work was developed and then clearly pinpoints

the research problem and defines research objectives. The chapter also concludes

having an overview regarding this thesis.

1.1 Background and Motivation

Mechanical Systems are among typically the oldest systems invented by humans

to be employed as helping systems in their daily life. Nowadays, mechanical

systems are applied in almost every part of our society. The variety of such

systems is broad but their applications are different, such as; the basic types like

a wheel, a pulley, and the on-off valve on the water line, simple devices like a

sewing machine, bicycle, large systems such as the initial heavy steam engine,

and the more advanced and sophisticated systems for example today’s industrial

systems, automobile, robots, aerospace systems and marine systems.

With the passage of time these systems became more common in daily life and

their manual functioning became tiresome and less productive due to complex

structure and functionality. Humans began thinking to somehow get a grip or

automate these systems for better output each quantitatively and qualitatively.

1
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This kind of need and realization involving regulation or automation brought to

the development of Mechanical Control systems and hence the useeof control

Theory in the field of Mechanics. Historically water levels regulator for steam

boiler by I. Pulzunov in 1765, and flyball governor for controlling the rate of

steam engine, mechanical system by James Watt in 1769, could be cited as

application of Automatic Feedback control in mechanical systems. State of the

art research and developments inside control theory on single front and advances

inside the technologies like electrical, digital and analog electronics,

microprocessors, microcontrollers and computers on other front, caused it to

design a more sophisticated mechanical systems. The results regarding these

systems, achievements by human beings are numerous and their impacts are

enormous reflected by the use of high performance in addition to quality systems

in modern day practical life.

From controlepoint of view, mechanical control systems can be classified into the

following subclasses:

1. Fully Actuated Mechanical: Number of controlainputs is equal to

number of degrees ofefreedom to be controlled.

2. Underactuated Mechanical Systems: Number of controleinputs is less

as compared to the number of degree of freedometo be controlled.

3. Nonholonomic Systems: These Systems have non integrable first order

constraints on their velocities.

Typically the control problem ofefully actuated systems is not really a big issue

because the matured nonlinear control techniques like feedback linearization are

available [1]. Desire for the control of nonholonomic systems started in 70′s and

established be fully grown standalone discipline in the 90’s [2]. Historically,

nonholonomic systems are the most extensively studied systems evident from the

vast quantity of literature and are still subject of active study in the control

research groups. The most important purpose, which led to this kind of research



Introduction 3

along with other interesting control problems, is the fact that these systems fail

to satisfy the necessary conditioneof Brockett [3] for existence of continuous time

invariant state feedback control for stabilization. In fact, the beginning of

research interest in underactuated mechanical systems could be traced returning

to nonholonomic systems due to initial realization that nonholonomic systems

obey first order constraints while underactuated mechanical systems obey second

order constraints [4–6].

In the last ten years, research shifted from assumptive nature to practical when

the usefulness of underactuated mechanical systems seemed to be realized in

diverse applications of engineering and scientific importance. The wide range

application areas of UMS systems include industry, robotics, aerospace systems

and marine systems. Apart by practical applications, underactuated mechanical

systems have great importance in education and research of control theory

because prototype systems for higher order nonlinear systems. Both theoretical

importance and practical usefulness have added to research

activitieseconcentrated on the control and analysis of UMS systems in the last

twenty years [7, 8].

Underactuation arises due to fewerenumber of control actuators compared to the

number of degrees in order to be controlled. Reasons associated with

underactuation may be natural due to dynamics of system itself or even

intentional/artificial for some beneficial practical purpose, for example:

• natural dynamics: helicopter, aircraft, underwater vehicle

• low cost, low weight

• low power consumption: important in applications like aerospace

• actuator failure

• low system level complexity

Some examples of practical UMSs include the following:
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• Robotics: mobile robots and flexible-link joints.

• Aerospace: aircraft, helicopters, spacecrafts and satellites.

• Marine: underwater vehicles, ships and surface vessels

• Education and Research: The TORA System, The Acrobot, The double

Inverted Pendulum,eThe Overhead Crane,eThe Beam-and-Ball System,eThe

Cart-Pole System.

There are several excellent class based approaches for mechanical systems, for

example, Controlled Lagrangian [9, 10], energy based [11], IDA-PBC [12], hybrid

[13, 14], and input disturbance approach [15, 16], although these techniques lack

of robustness. Because of absence of direct independent control actuators for a

few number of the degree of freedom, UMS systems are more vulnerable to the

disturbances. Standard SMC provides good measure the consequences of

disturbance and to make system responce robust.

The aforementioned discussion and analysis makes clear that the benefits of

UMS systems are numerous but their realization in practical applications is

usually restricted due to difficult control design. Presently there are good

research work in the literature but most are limited to the system by system

approach or lack of robustness and hence there is a need to research a novel

robust design approach applicable to UMS systems.

1.2 Modeling of Underactuated Mechanical

Systems

Following a brief introduction now we are going to study about the dynamic

modeling of UMS. For n degree mechanical systems the euler-lagrange

representation is [17]:

e
d

dt

∂L

∂q̇
− ∂L

∂q
= F (q)ue (1.1)
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here;

L(q, q̇) is Lagrangian

F (q) ∈ Rn×m Control input matrix

u ∈ Rm Control input vector

q ∈ Rn Configuration vector

In above, if m=rank(F)=n then such systems are called fully actuated systems,

but If m=rank(F)<n then such systems are called underactuated systems [18].

The vector form of eq (1.1) can be written as;

eM(q)q̈ + C(q, q̇)q̇ +G(q) = F (q)ue (1.2)

here;

M(q) is positiveedefinite symmetriceinertia matrix

C(q, q̇)q̇ is centrifugaleand coriolis term

G(q) isegravitational term

The lagrangian of a system can be written as;

eL(q, q̇) = k(q, q̈)− v(q) =
1

2
q1
TM(q)q1 − v(q)e (1.3)

Lagrangian is theedifference betweenekinetic energy and potential energy.

For general case F (q) = [F1(q), F2(q)]T and q = [q1, q2]T dynamics (1.2) can be

written as;

m11q̈1 +m12q̈2 + c1 + g1 = F1(q)u

m21q̈1 +m22q̈2 + c2 + g2 = F2(q)u
(1.4)

M(q)=

m11 m12

m21 m22

 is positive definite symmetrical inertia matrix,

c1(q, q̇) ∈ R(n−m) and c2(q, q̇) ∈ Rm are the coriolis and centrifugal terms,

g1(q) ∈ Rn−m and g2(q) ∈ Rm are the gravitational terms and u ∈ Rm is the

vector of control inputs produced by m actuators. For F1(q) = 0 and F2(q) = 1,



Introduction 6

one may have

m11q̈1 +m12q̈2 + c1 + g1 = 0

m21q̈1 +m22q̈2 + c2 + g2 = u
(1.5)

Where as for F1(q) = 1 and F2(q) = 0, one may have

m11q̈1 +m12q̈2 + c1 + g1 = u

m21q̈1 +m22q̈2 + c2 + g2 = 0
(1.6)

In this research work we are considering both the cases when F1(q) = 0 and

F2(q) = 1 and F1(q) = 1 and F2(q) = 0. Solving the first system in (1.5) for

q̈1 and q̈2, and then substituting the result in the second equation, (1.5) can be

written as:

m̄11q̈1 + c̄1 + ḡ1 = u (1.7a)

m̄22q̈2 + c̄2 + ḡ2 = u (1.7b)

where

m̄11(q) = m21 −m22m
−1
12 m11

c̄1(q, q̇) = c2 −m22m
−1
12 c1

ḡ1(q) = g2 −m22m
−1
12 g1

m̄22(q) = m22 −m21m
−1
11 m12

c̄2(q, q̇) = c2 −m21m
−1
11 c1

ḡ2(q) = g2 −m21m
−1
11 g1

(1.8)
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Since q1 ∈ Rn−m and q2 ∈ Rm, dynamics (1.7) is a set of two second order systems

in state variables. The state space representation of (1.7) can be written as [19].

eẋ1 = x2e

eẋ2 = f1 + b1(x)ue

eẋ3 = x4

eẋ4 = f1 + b2(x)u

e
...

eẋ2n−1 = x2

eẋ2n = fn + bn(x)u

(1.9)

Here x = [x1, x2, x3 . . . , x2n−1, x2n]T is the state vector fi(x) and bi(x),

i = 1, 2, 3, 4..

....n are the nonlinear functions of the states and u is the single control input.

For n = 2, the equation (1.9) can be written as:

eẋ1 = x2

eẋ2 = f1 + b1(x)u

eẋ3 = x4

eẋ4 = f1 + b2(x)u

(1.10)

state space models of the Pendubot and inverted pendulum systems are

represented by (1.10). For n = 3 the equation (1.9) gives:

eẋ1 = x2

eẋ2 = f1 + b1(x)u

eẋ3 = x4

eẋ4 = f2 + b2(x)u

eẋ5 = x6

eẋ6 = f3 + b3(x)u

(1.11)
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1.3 Problem Statement and Research Objectives

Underactuated mechanical systems have assumptive and practical importance

along with the added benefits of underactuation. But the advantages associated

with underactuation come at a higher cost of difficult control design due to

complicated nonlinearity and control coupling. Lack of direct actuators for some

of the degrees of freedom makes UMS systems more susceptible to model

uncertainties and external disturbances. Greater possibility of mismatch between

the real plant and their mathematical model on which control synthesis is based

results in external disturbances and model uncertainties are common in practical

applications. So designing robust nonlinear control techniques in order to

effectively control the complex nonlinear behavior of UMS systems in presence of

modeleuncertainties and externaledisturbances becomes an obviously significant

control problem. Solving this challenging problem will certainly help in the

realization of full advantages in addition to usefulness of underactuated

mechanical systems in high performance control applications. Non-linear control

techniques like backstepping and Sliding mode control [20, 21] can efficiently

control higher order complex nonlinear dynamics and provides robustness to

model uncertainties and external disturbances. There are other nonlinear control

techniques developed for mechanical systems for example energy based control

[11], Controlled Lagrangian method [9, 10], IDA-PBC [12], hybrid control

[13, 14], and equivalent-input-disturbance control technique [15] although these

techniques lack of robustness.

The research goal in this work is to investigate, using backstepping, feedback

linearization and sliding mode control theory, a comprehensive and unified yet

simple to apply high performance robust control design framework for

underactuated mechanical systems. Finally, the framework will be numerically

validated for the following benchmark UMS systems.

1. Double Inverted Pendulum

2. The TORA System
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3. The Overhead Crane system

4. Inverted Pendulum

5. Cart-Pole System

1.4 Thesis Organization

This thesis consists of six chapters. The focus of this research work is to propose

novel solution to the stabilization problem of underactuated systems. This

chapter explain introduction, motivation for work, thesis objective and thesis

organization.

Chapter 2-LiteratureeReview:

This chapter takes into account the literature review regarding stabilization of

underactuated mechanical systems.

Chapter 3-Stabilization of Underactuated Systems: Feedback

Linearization Technique:

This chapter presents the proposed control techniques based on input/output

feedback linearization base control. The algorithms is applied to underactuated

cart-pole system, overhead crane system.

Chapter 4-Stabilization of Underactuated Systems: Adaptive

Backstepping Technique:

This chapter presents adaptive backstepping based stabilization of the

underactuated mechanical systems. The algorithm is applied to underactuated

cart pole system ande overhead crane system.

Chapter 5-Stabilization of Underactuated Systems: Sliding Mode

Control:

This chapter presents the proposed control algorithm based slidingemode control

and adaptive slidingemode control. The algorithms is applied to underactuated

cart-pole system,eoverhead crane system, TORA, Double inverted pendulum.

Chapter 6-ConclusioneandeFuture Work:

This chapter summarizes the overall thesis and draws conclusions. The
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significance of the proposed research is emphasized. Future directions have also

been proposed for further research.



Chapter 2

Literature.Review

This chapter presents aeliterature review of underactuated mechanical systems

from control perspective. Theoretical challenges in control of UMS systems are

mentioned. Different analytical tools and control techniques designed over the

past years are reviewed.

2.1 Introduction

Control of underactuated mechanical systems remains active areas of research in

the last decade. Research interest in this field started with the analysis and

study of nonholonomic mechanical systems.xAnalysis and control of

nonholonomic systems [2, 22] started in early 80’s and became a full grown and

established area of research in the middle of the 90’s. Study of nonholonomic

systems developed some interesting control problems. Being non-holonomic

nature, it had been proved that these systems are not stabilizable by smooth

continuous time invariant state feedback control techniques [3, 23].

As few of these nonholonomic mechanical systems were inherently

underactuated, the interest of researchers shifted towards the analysis and

control of UMS systems in the 90’s together with the first applications mainly

within robot manipulators [4, 24–32]. This kind of interest got momentum when

11



Literature Review 12

use of underactuated mechanical systems became increasingly popular in

scientific and research applications such as robotics, marine systems and

aerospace systems. These developments led to the establishment of research in

UMS systems as one of the most effective field both from technical and

theoretical point of view and research in the control of UMS systems started as

the field [5, 6, 11, 17, 33].

Nonholonomic mechanical systems have 1st order (velocity) constraints. As parts

of the dynamics of an UMS systems can be written as second order (acceleration)

constraints contrast to non-holonomic systems, underactuated mechanical also

called mechanical systems with 2nd order nonholonomic constraints[4, 6].

2.2 Theoretical Challenges in the Controleof

Underactuated Mechanical Systems

Underactuation, i.e. fewer quantity of independent control actuators compared

to configuration variables being controlled, fundamentally makes control problem

of underactuated mechanical systems an extremely challenging task. Moreover,

higher non linear behavior, input coupling and nonholonomic constraints adds

extra difficulties for this challenging control problem. Feedback linearization is

an important design tool used an initial step in design of nonlinearecontrol law

for nonlinear systems [1]. However owing to underactuatoin. exact feedback

linearization for UMS systems is not achievable. This could be seem from the

dynamical equations of underactuated mechanical systems in which the control

input matrix is non invertible, and hence, an explicit change of control is not

possible that indicates the exact feedback linearization does not exist.

In [11, 25], it had been shown that for the certain class of underactuated

mechanical systems, the dynamics could be partitioned into the unactuated

subsystem and the actuated subsystem and a partial feedback linearization of

the actuated subsystem is achievable. But still, the unactuated subsystem has

nonlinear behaviour and coupled to the linearized actuated subsystem.
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Afterwards, in [17], it had been shown that an explicit change is possible to

decouple the two subsystems in a actuated one and an unactuated one. But still,

decoupled systems are highly nonlinear and, as mentioned, this is for a specific

class of UMS not all the systems.

2.3 Control Design Approaches for UMS

Different control design approaches, designed and used over the years for

underactuated mechanical systems, are reviewed in this section.

• Energy and Passivity Based Control:

In energy and PassivityeBased control (PBC) methods the total energy is

regulated towards the equivalent value of the desired equilibrium state as

a result achieving regulation of the system states to desired values. This

technique is primarily used for the set-point regulation of underactuated

mechanical systems. Application of these methods could be found in the

works [11, 14, 34–37].

• Controlled Lagrangian:

In Controlled Lagrangian method, Lagrangian of UMS systems is regulated,

simply by modifying the inertiaematrix and potential energy matrix, towards

the desired equilibrium state by using control input and then guarantee the

passivity of the system, damping is injected into the system. Application of

Controlled Lagrangian to underactuated mechanical systems could be found

in the works [9, 10, 38].

• IDA-PBC:

In IDA-PBC method the Hamiltonian of UMS systems is regulated, by

changing the inertia matrix, the potential energy function and

interconnection matrix, towards the desired equilibrium state by using

control input and then guarantee the passivity of the system, damping is
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injected into the system. Application of Controlled Lagrangian to

underactuated mechanical systems could be found in the works [12, 39, 40].

• Optimal Control:

In Optimal Control, the procedure is based on finding a control algorithm

that minimizeseoremaximizes a cost function. Optimization of energy or

time are two approaches in optimal Control. Application of Controlled

Lagrangian to underactuated mechanical systems could be found in the

works [41–44].

• Sliding Mode Control:

SlidingeMode Control is most powerful robust technique against

uncertainties, unmodeled plant dynamics and disturbances. In sliding

mode control, 1st, a sliding manifold is designed with desired dynamics and

then control law is chosen to force system towards the sliding surface.

After reaching the surface, system states slide, alongside the surface, to

desired values and remain there under the control action. Robustness to

external disturbance is ensured through discontinuous term in control law

or through estimation and after that cancellation by the control law. Aside

from robustness, SMC can easily control higher order and complex

nonlinear models. Because of these promising control features, SMC has

been used by the researchers for the control of UMS systems. Application

SMC to underactuated mechanical systems could be found in the works

[45–51].

In conclusion, there are many outstanding research work on the subject. Most

works address theecontrol problemeof the specic UMS systems. There is strong

requirement for class based control design approaches that are robust.
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2.4 Examples Underactuated Mechanical

Systems

The UMS include The Translational OscillatorewitheRotational Actuator (TORA)

system [52], the beam and ball system [53], the Acrobot [54], the Pendubot [36],

the cart-pole system [55], the crane system [56], and the double inverted pendulum

[57].

2.4.1 Acrobot and Pendubot

Acrobot [54] and Pendubot [36] are two-linke manipulators with a singleeactuator

at elbow and shoulder respectively as shown in Fig (2.1). Both manipulators have

identical equations of motion and are graphically alike. The stabilization of the

two-link manipulator to its upright equilibriumepoint (q1 = π
2
and q2 = 0) from

any initialecondition is their control task.

Energy-based control is one of the famous control approach used to swing up the

system from its stable downward spot to precarious upright spot, and swap to a

linear controller for stabilization [36]. Lai in [58] to give a complete unified control

technique. An impulse momentum approach provided a new idea on swing up

control by Albahkali in [59] and Jafari in [60].

(a) Acrobot
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(b) Pendubot

Figure 2.1: Acrobot and Pendubot Systems

2.4.2 Cart-Pole System

The cart-pole system in Fig (2.2) is a benchmark underactuated system. It used as

a testbed for nonlinear control study. The control job is to swingup the pendulum

from its steady downward equilibrium state. (q1 = 0 and q2 = π) to vertical

unbalanced equilibrium point (q2 = 0), while retains the cart at its original point

(q1 = 0). Considerable work has been done in the past from fuzzy control (FC)

and energy based prespective for the under consideration cart-pole system in [11].

Figure 2.2: Cart-Pole System
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2.4.3 Ball and Beam System

The balleandebeam system [53] consists of a beam able to move up and downward

via motor connected at one end (whereas the other end of the beam is fixed) as

shown in Fig (2.3). As this beam is made of metal and iron ball is allowed to

move freely on it, control task is toestabilize the ball on the desired position on

the beam, starting from any initial condition on the beam. The Lyapunov-based

method [61] control works on the balleand beam system.

Figure 2.3: Ball and Beam System

2.4.4 Translational Oscillator with Rotational Actuator

System (TORA)

The TORA system in Fig (2.4) is a non-linear benchmark example for different

control techniques. The system contains an oscillating translational stage and an

eccentric revolving pendulum. To make sure the horizontal displacement q1 → 0

in the occurrence of any exterior disturbance is the control task of TORA [62].
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Figure 2.4: Translational Oscillator with a Rotational Actuator System



Chapter 3

Stabilization of Underactuated

Systems: Feedback Linearization

Technique

This chapter presents an input/output feedback linearization algorithm for the

stabilization of underactuated mechanical systems. Feedback linearization is one

of the common approacheused in controllingenonlinear systems. The approach

involves coming up with aetransformation of aenon linear system to equivalent

linear system or at least closely to it. This problem deserves a lot of attention,

its positive solution directly or indirectly extends the applicability of the linear

methods to a more general nonlinear class of systems. First we define the

suitable control u in term of u1 and u2 to transform the system into particular

structure. In first method The u1 is designed using input/output feedback

linearization technique. On the basis of Lyapunov stability, the control u2 is

derived. In second method u2 is derived using integral sliding mode control. The

control algorithms is applied to two systems, namely; cart-pole system and

overhead crane system. The effectiveness of proposedealgorithm is verified

throughenumerical simulations.

19
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3.1 Problem Statement

For a given desired point xdes ∈ Rn, a control input u is constructed in such a way

that xdes is an attractive point t→∞ leads to x→ xdes = 0.

3.2 The Proposed Control Algorithms

3.2.1 First Method

Step 1:

Write the system (1.10) as:

eẋ1 = x2

eẋ2 = f1 + b1(x)ue

eẋ3 = x4

eẋ4 = f2 + b2(x)ue

(3.1)

where, fi and bi are nonlinear functions.

Step 2:

Choose the input u;

u =
−f2 + u1

b2(x)
+ u2 (3.2)

the system (3.1) can be written the following form:

eẋ1 = x2

eẋ2 = f1 + b1(x)(
−f2 + u1

b2(x)
+ u2)

eẋ3 = x4

eẋ4 = u1 + b2(x)u2

(3.3)

where ui are the new inputs.

Step 3:

Assume the system have two subparts, xi, i = 3, 4 are stabilized via u1 and
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xi, i = 1, 2 are stabilized using u2, choose output of the system y = x3. Design

u1 using the input/output feedback linearization technique, while u2 design using

lyapunov stability.

y = x3

ẏ = ẋ3 = x4

ÿ = ẋ4 = u1 + b2(x)u2

(3.4)

Define the error:

e = x3 − x3d

ė = ẋ3 = x4

ë = ẋ4 = u1 + b2(x)u2

(3.5)

where x3d = 0, choose u1 = −k1e−k2ė, after some manipulation the error dynamics

can be written as:

ë+ k1ė+ k2e− b2(x)u2 = 0 (3.6)

In eq (3.6), if u2 → 0 as t → ∞, then error dynamics e, ė and ë must → 0 as

t → ∞, to stabilize the x3 and x4. For designing u2, choose a lyapunov function

as:

V =
1

2
c1x

2
1 +

1

2
c2x

2
2

V̇ = c1x1ẋ1 + c2x2ẋ2

V̇ = c1x1x2 + c2x2ẋ2

V̇ = x2(c1x1 + c2ẋ2)

V̇ = −c3x
2
2 6 0

(3.7)

where, ẋ2 = (−c1x1 − c3x2)/c2

−c1x1 − c3x2

c2

= f1 + b1(x)(
−f2 + u1

b2(x)
+ u2)

u2b1(x) =
−c1x1 − c3x2

c2

− f1 − b1(x)(
−f2 + u1

b2(x)
)

u2 =
(−c1x1 − c3x2 − c2f1)b2(x)− c2b1(x)(u1 − f2)

c1b1b2

u2 =
(−c1x1 − c3x2 − c2f1)b2(x)− c2b1(x)(−k1x3 − k2x4 − f2)

c1b1b2

(3.8)
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putt u2 in dynamics (3.3) to get:

eẋ2 = f1 + b1(x)(
−f2 + u1

b2(x)
)− x1 +

(−c3x2 − c2f1)

c1

− c2b1(x)(−k1x3 − k2x4 − f2)

c1b2

(3.9)

LaSalle’s theorem:

Let f(x) be aelocally Lipschitz functionedefined over a domaineD ⊂ Rn and Ω ⊂

D beea compact setethat is positively invariant with respect to ẋ = f(x). Let V (x)

beea continuously differentiable functionedefined over D suchethat V̇ (x) ≤ 0 in

Ω. Let E be theeset of all pointsein Ω where V̇ (x) = 0eand and M be theelargest

invariant setein E. Then every solution startingein Ω approaches M as t→∞.

From eq (3.7):

V̇ (x) = 0eforex2 = 0eirrespective of the value ofex1

x2(t) ≡ 0e⇒ eẋ2(t) ≡ 0e⇒ ex1(t) ≡ 0, using eq (3.9)

Thus, the origin iseasymptotically stable.

Step 4:

The eq (3.2) as:

u =
−f2 + u1

b2(x)
+ u2

u =
−f2 +−k1e− k2ė

b2(x)
+

(−c1x1 − c3x2 − c2f1)b2(x)

c1b1b2

−

c2b1(x)(−k1x3 − k2x4 − f2)

c1b1b2

3.3 Application to Underactuated Mechanical

Systems

3.3.1 Cart-Pole System

The proposed control scheme is now used to stabilize an cart-pole system as

considered in [63]. It is an underactuated mechanical system with 2DOF. The
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dynamic of the system as given in [63] is:

(M +m sin2 θ1)ẍ1 −m sin θ1(lθ̇2
1 − g cos θ1) = F + u

(M +m sin2 θ1)lθ̈1 + lθ̇2
1 sin θ1 cos θ1 − (M +m)g sin θ1 = − cos θ1(F1 + u)

(3.10)

define the state vector x = [x1 ẋ1 θ1 θ̇1]T = [x1 x2 x3 x4], the state space

representation becomes;

eẋ1 = x2

eẋ2 = f1 + b1(x)u

eẋ3 = x4

eẋ4 = f2 + b2(x)u

(3.11)

where

f1 =
mlx2

4 sinx3 −mg sinx3 cosx3 + F

M +m sin2 x3

f2 =
−mlx2

4 sinx3 cosx3 + (M +m)g sinx3 − F cosx3

Ml +ml sin2 x3

b1(x) = .
1

M +m sin2 x3

b2(x) = .
− cosx3

Ml +ml sin2 x3

(3.12)

The actual values of.the system.parameters in the simulation are:

F = sinx3

l = 0.5(m)

m = 1(kg)

M = 2(kg)
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Figure 3.1: Closed loop response of cart-pole system corresponds to initial
condition (x1(0), ..., x4(0)) = (−π/6, 0, 0, 0), (b) Time history of control input u
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3.3.2 Second Method

Step 1:

Write the system (1.10) as:

eẋ1 = x2

eẋ2 = f1 + b1(x)u+ d1(x, t)e

eẋ3 = x4

eẋ4 = f2 + b2(x)u+ d2(x, t)e

(3.13)

where, fi and bi are nonlinear functions and suppose d1(x, t) = 0, d2(x, t) = 0.

Step 2:

Choose the input u;

u =
−f2 + u1

b2(x)
+ u2 (3.14)

the system (3.13) can be written the following form:

eẋ1 = x2

eẋ2 = f1 + b1(x)(
−f2 + u1

b2(x)
+ u2)

eẋ3 = x4

eẋ4 = u1 + b2(x)u2

(3.15)

where ui are the new inputs.

Step 3:

Assume the system have two subparts, xi, i = 3, 4 are stabilized via u1 and

xi, i = 1, 2 are stabilized using u2, choose output of the system y = x3. Design

u1 using the input/output feedback linearization technique, while u2 design using

integral sliding mode control.

y = x3

ẏ = ẋ3 = x4

ÿ = ẋ4 = u1 + b2(x)u2

(3.16)
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Define the error:

e = x3 − x3d

ė = ẋ3 = x4

ë = ẋ4 = u1 + b2(x)u2

(3.17)

where x3d = 0, choose u1 = −k1e−k2ė, after some manipulation the error dynamics

can be written as:

ë+ k1ė+ k2e− b2(x)u2 = 0 (3.18)

In eq (3.18), if u2 → 0 as t → ∞, then error dynamics e, ė and ë must → 0 as

t→∞, to stabilize the x3 and x4. For designing u2 using a integral sliding mode

control. In this method the required control law is of the nature.

eu2 = u2o + u21e (3.19)

where u2o being the ideal control and u21 is designed to reject perturbation term.

Choose a integral sliding surface as [20]:

eσ(x) = σo(x) + ze (3.20)

The first term in the right hand side of (3.20) indicates the contribution of

conventional sliding surface which can be written as:

eσo(x) = c1x1 + x2e

eσ(x1, x2) = c1x1 + x2 + ze
(3.21)

Now, taking the derivative of (3.21)

eσ̇ = c1x2 + f1 + b1(x)(
−f2 + u1

b2(x)
+ u2o + u21) + że (3.22)

Choosing ż = −(c1x2 + f1 + b1(x)(−f2+u1
b2(x)

+ u2o)) with z(0) = σ(x(0)), the above

equation (3.22) becomes:

eσ̇ = b1(x)u21e (3.23)
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Comparing (3.23) with σ̇ = −M1sign(σ), one has

eu21 = −Msign(σ)e (3.24)

Where M = M1

b1(x)
is the gain of the discontinuousecomponent and

u2o = −k3x1 − k4x4. The final control law can beeobtained by substituting the

designedeexpression of continuous and discontinuousecomponents in (3.19). This

control law eliminate the reaching phase and results in the robusteregulation of

the stateseto the origin.

Choose a Lyapunov function to ensure the stability:

V =
1

2
σTσ

V̇ = σσ̇

V̇ = −M1|σ| ≤ 0

(3.25)

Eq (3.25) ensured that σ → 0 in finite time.

3.4 Application to Underactuated Mechanical

Systems

Case 1: Simulation results without external disturbances.

3.4.1 Cart-Pole System

The proposed control scheme is now used to stabilize an cart-pole system as

considered in [63]. It is an underactuated mechanical system with 2DOF. The

dynamic of the system discussed in (3.3.1).
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Case 2: Simulation results with external disturbances.

3.4.2 Cart-Pole System
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Chapter 4

Stabilization of Underactuated

Systems: Adaptive Backstepping

Technique

In this chapter, we propose adaptive backstepping based design technique for

underactuated systems. Our objective is to construct the stabilizing control

algorithm for the class of 2DOF underactuated systems represented by (4.1).

The model of 2DOF underactuated systems can be described as:

eẋ1 = x2e

eẋ2 = f1 + b1(x)ue

eẋ3 = x4

eẋ4 = f2 + b2(x)ue

(4.1)

In order to stabilize system (4.1), an adaptive backsteppingebased controller is

proposed,ewhich yields asymptotic stabilizationeof the closed-loopesystem. This

is achieved by first transforming the original system into a new system that can be

made asymptotically stable. After the stabilization of the transformed system, the

stability of the original system can be easily established. Numerical results show

32
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the effectiveness of the proposed control algorithm when compared to existing

methods.

4.1 Control Problem

In the presence of suitable feedback strategy, a control law is designed such that

as t → ∞, x → xdes from any initial condition xo. It is further supposed that

xdes = 0 can beeachieved by suitable transformation of the system.

4.2 The Proposed Control Algorithm

Step 1:

Consider the system (4.1) as:

ẋ1 = x2e

ẋ2 = f1 + b1(x)ue

ẋ3 = x4e

ẋ4 = f2 + b2(x)ue

(4.2)

By choosing u = 1
b1(x)

(−f1 + θ1φ + x3), here θ1 is unknown and we will find it

adaptively, θ1 = θ̂1 + θ̃1, system (4.2) is written as:

ẋ1 = x2

ẋ2 = x3 + θ̂1φ+ θ̃1φ

ẋ3 = x4

ẋ4 = β + αx3 + αθ̂1φ+ αθ̃1φ

(4.3)

In equation (4.3) α = b1
b2

and β = f2− b1
b2
f1. Now with the help of below-mentioned

steps, the system (4.3) can be transformed from x→ z domain and then back from

z → x by using inverse transformation.
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Step 2:

Consider Eq. (4.3): ẋ1 = x2, consider x2 state as a virtual input and α1 as a

stabilizing function, then the error variable z1 = x2 − α1, Eq (43a) becomes:

ẋ1 = z1 + α1 (4.4)

Choose a layapunov function V1 = 1
2
x2

1. For computing the stabilizing function:

V̇1 = x1ẋ1 = x1(z1 + α1) (4.5)

Choose α1 = −x1, then V̇ becomes:

V̇1 = −x2
1 + x1z1 (4.6)

The term x1z1 will be canceled in the next step. Eq (4.4), becomes:

ẋ1 = z1 − x1 (4.7)

Take a derivative of z1:

ż1 = ẋ2 − α̇1e

ż1 = x3 + θ̂1φ+ θ̃1φ+ ẋ1

ż1 = x3 + θ̂1φ+ θ̃1φ+ z1 − x1

(4.8)

Consider x3 state as a virtual input and α2 as a stabilizing function, then the error

variable z2 = x3 − α2, Eq (4.8) becomes:

ż1 = z2 + α2 + θ̂1φ+ θ̃1φ+ z1 − x1e (4.9)
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Consider the Lyapunovefunction V2 = V1 + 1
2
z2

1 for computing the stabilizing

function α2. Then:

V̇2 = V̇1 + z1ż1

V̇2 = −x2
1 + x1z1 + z1(z2 + α2 + θ̂1φ+ θ̃1φ+ z1 − x1)

V̇2 = −x2
1 + z1(z2 + α2 + θ̂1φ+ z1) + z1θ̃1φ

(4.10)

Choose α2 = −2z1 − θ̂1φ, then V̇2 = −x2
1 − z2

1 + z1z2 + z1θ̃1φ, The term z1z2 will

be canceled in the next step. Eq (4.9) becomes:

ż1 = −x1 − z1 + z2 + θ̃1φ (4.11)

Take a derivative of z2:

ż2 = ẋ3 − α̇2e

ż2 = x4 − (−2ż1 −
˙̂
θ1φ− θ̂1φ̇)

ż2 = x4 − 2x1 − 2z1 + 2z2 + 2θ̃1φ+
˙̂
θ1φ+ φ̇θ̂1

(4.12)

Consider x4 state as a virtual input and α3 as a stabilizing function, then the error

variable z3 = x4 − α3, Eq (4.12) becomes:

ż2 = z3 + α3 − 2x1 − 2z1 + 2z2 + 2θ̃1φ+
˙̂
θ1φ+ φ̇θ̂1 (4.13)

Consider the Lyapunovefunction V3 = V2 + 1
2
z2

2 for computing the stabilizing

function α3. Then:

V̇3 = V̇2 + z2ż2

V̇3 = −x2
1 − z2

1 + z1z2 + z1θ̃1φ+ z2(z3 + α3 − 2x1 − 2z1 + 2z2 + 2θ̃1φ+
˙̂
θ1φ+ φ̇θ̂1)

V̇3 = −x2
1 − z2

1 + z1θ̃φ+ z2(z3 + α3 − 2x1 − z1 + 2z2 + 2θ̃1φ+
˙̂
θ1φ+ φ̇θ̂1)

(4.14)

Choose α3 = 2x1+z1−3z2−
˙̂
θ1φ−φ̇θ̂1, then V̇3 = −x2

1−z2
1−z2

2+z2z3+z1θ̃1φ+2z2θ̃1φ,

Eq (4.13) becomes:

ż2 = −z1 − z2 + z3 + 2θ̃1φ (4.15)
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Add and subtract θ̂2φ in α3;

α3 = 2x1 + z1 − 3z2 −
˙̂
θ1φ− φ̇θ̂1 + θ̂2φ− θ̂2φ (4.16)

Let, w =
˙̂
θ1φ+ φ̇θ̂1 + θ̂2φ, then Eq (4.16) becomes:

α3 = 2x1 + z1 − 3z2 − w + θ̂2φ (4.17)

Take a derivative of z3;

ż3 = ẋ4 − α̇3

ż3 = β + αx3 + αθ̂1φ+ αθ̃1φ− (2ẋ1 + ż1 − 3ż2 − ẇ +
˙̂
θ2φ) + θ̂2φ̇

ż3 = β + αx3 + αθ̂1φ+ αθ̃1φ+ 5θ̃1φ+ 3x1 − 4z1 − 4z2 + 3z3 + ẇ − ˙̂
θ2φ− θ̂2φ̇

(4.18)

Consider the layapunov function;

V4 = V3 +
1

2
z2

3 +
1

2
θ̃1

2
+

1

2
θ̃2

2
(4.19)

V̇4 = V̇3 + z3ż3 + θ̃1
˙̃
θ1 + θ̃2

˙̃
θ2 (4.20)

Choose ẇ = u1 = −β − αx3 − αθ̂1φ − 3x1 + 4z1 + 3z2 − 4z3 +
˙̂
θ2φ + θ̂2φ̇ − θ̃2φ,

˙̃
θ1 = −z1φ− 2z2φ− 5z3φ− αz3φ− k1θ̃1 and

˙̃
θ2 = −k2θ̃2, Eq (4.20) becomes:

V̇4 = −x2
1 − z2

1 − z2
2 − z2

3 − k1θ̃1

2
− k2θ̃1

2
≤ 0 (4.21)

and;
˙̂
θ1 = − ˙̃

θ1

˙̂
θ2 = − ˙̃

θ2

(4.22)

Eq (4.18) becomes:

ż3 = −z2 − z3 + θ̃1(α + 5)− θ̃2φ (4.23)
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Step 3:

So the transformed system can be written as:

ẋ1 = z1 − x1

ż1 = −x1 − z1 + z2 + θ̃1φ

ż2 = −z1 − z2 + z3 + 2θ̃1φ

ż3 = −z2 − z3 + θ̃1(α + 5)− θ̃2φ

(4.24)

Define z = [x1ez1ez2ez3]T and θ̃ = [θ1eθ2]T


ẋ1

ż1

ż2

ż3

 =


−1 1 0 0

−1 −1 1 0

0 −1 −1 1

0 0 −1 −1




x1

z1

z2

z3

 +


0 0

φ 0

2φ 0

α + 5 −φ


θ̃1

θ̃2



ż = Mz +Nθ̃ (4.25)

where M is negative definite. Since the derivative of Lyapunov function given by

(4.21) is negative, therefore, we conclude that the transformed system (4.24) is

asymptotically stable, therefore, it implies that x1, z1, z2, z3 → 0 and

θ̃1, θ̃2 → 0.

The states xi in term of zi can be written as;

x1 = x1

x2 = −x1 + z1

x3 = −2z1 + z2 + θ̂1φ

x4 = z3 + 2x1 + z1 − 3z2 − f(θ̂1, θ̂2, φ)

(4.26)



Stabilization of Underactuated Systems: Adaptive Backstepping Technique 38

4.3 Application to Underactuated Mechanical

Systems

4.3.1 Overhead Crane System

The proposed control scheme is now used to stabilize an overhead crane system

as considered in [63]. It is an underactuated mechanical system with 2 DOF. The

dynamic of the system as given in [63] is:

(M +m sin2 θ1)ẍ1 −m sin θ1(lθ̇2
1 + g cos θ1) = u

(M +m sin2 θ1)lθ̈1 + lθ̇2
1 sin θ1 cos θ1 + (M +m)g sin θ1 = −u cos θ1

(4.27)

define the state vector x = [x1 ẋ1 θ1 θ̇1]T = [x1 x2 x3 x4] the state space

representation becomes;

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f2 + b2(x)u

(4.28)

where

f1 =
mlx2

4 sinx3 −mg sinx3 cosx3

M +m sin2 x3

f2 =
−mlx2

4 sinx3 cosx3 + (M +m)g sinx3

Ml +ml sin2 x3

b1(x) =
1

M +m sin2 x3

b2(x) =
− cosx3

Ml +ml sin2 x3

(4.29)

The actual values of the system parameters in the simulation are:

m = 1(kg)

l = 3(m)

M = 2(kg)
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Figure 4.1: Closed loop response of overhead crane system corresponds to
initial condition (x1(0), ..., x4(0)) = (2, 0, 0, 0), (c) Time history of control input

u1 and u

4.3.2 TORA System

The proposed control scheme is now used to stabilize an cart-pole system as

considered in [63]. It is an underactuated mechanical system with 2DOF. The

dynamic of the system as given in [63] is:

e(M +m)ẍ+me cos θθ̈ −meθ̇2 sin θ + kx = Fe

e(me2 + I)θ̈ +me cos θθ̈ẍ = Ne
(4.30)

Define theenormalized state p =
√

M+m
I+me2

x normalized time, τ =
√

k
M+m

t,

dimensionless control u = M+m
k(I+me2)

and disturbance w = 1
k

√
M+m
I+me2

F , then (4.30)

becomes:

p̈+ p = α(θ̇2 sin θ − θ̈ cos θ) + w

θ̈ = αṗ cos θ + u
(4.31)
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where the differentiationseare with respect to the normalizedetime and α

represents the coupling between the translational and rotational motions and can

be defined as:

eα =
me1√

(I +me2
1)(M +m)

e (4.32)

define the state vector x = [p ṗ θ θ̇]T = [x1 x2 x3 x4], the state space

representation becomes;

eẋ1 = x2

eẋ2 = f1 + b1(x)u

eẋ3 = x4

eẋ4 = f2 + b2(x)u

(4.33)

where

f1 =
−x1 + αx2

4 sinx3 + w

1− α2 cos2 x3

f2 =
αx1 cosx3 − α2x2

4 sinx3 − α cosx3w

1− α2 cos2 x3

b1(x) =
−α cosx3

1− α2 cos2 x3

b2(x) =
1

1− α2 cos2 x3

(4.34)

The actual values of the system parameters in the simulation are:

m = 0.5(kg)

l = 0.3(m)

M = 2(kg)

α = 2(m)



Stabilization of Underactuated Systems: Adaptive Backstepping Technique 42

0 2 4 6 8 10

Time(s)

-0.2

0

0.2

0.4

0.6

x
1

0 2 4 6 8 10

Time(s)

-0.2

-0.1

0

0.1

z
1

0 2 4 6 8 10

Time(s)

-0.05

0

0.05

0.1

z
2

0 2 4 6 8 10

Time(s)

-0.06

-0.04

-0.02

0

0.02 z
3

(a)

0 2 4 6 8 10

Time(s)

-0.2

0

0.2

0.4

0.6

x
1
(
m

)

x
1

0 2 4 6 8 10

Time(s)

-0.5

0

0.5

x
2
(
m

/s
)

x
2

0 2 4 6 8 10

Time(s)

-0.2

0

0.2

0.4

x
3
(
r
a

d
)

x
3

0 2 4 6 8 10

Time(s)

-0.5

0

0.5

1

x
4
(
r
a

d
/s

)

x
4

(b)



Stabilization of Underactuated Systems: Adaptive Backstepping Technique 43

0 1 2 3 4 5 6 7 8

Time(s)

-1

0

1

2

3

C
o

n
tr

o
l 

In
p

u
t

u
1

0 1 2 3 4 5 6 7 8

Time(s)

-4

-2

0

2

C
o

n
tr

o
l 

In
p

u
t

u

(c)

Figure 4.2: Closed loop response of TORA system corresponds to initial
condition (x1(0), ..., x4(0)) = (π/6, 0, 0, 0), (c) Time history of control input

u1 and u



Chapter 5

Stabilization of Underactuated

Systems: Sliding Mode Control

5.1 Introduction

This chapter presents a sliding mode control algorithm for the stabilization of

underactuated mechanical systems. Two methods are proposed: first method,

transforming the original system into a new system using suitable transformation.

In this method the dimension of the system increased. The transformed system is

then stabilized using first order sliding mode control.

Second method: The system is transformed into a particular structure containing

a nominal part andesome unknowneterms, which are computed adaptively. The

transformed system is thenestabilized using adaptive integral sliding mode control.

5.2 Problem Statement

For a given desired point xdes ∈ Rn, a control input u is constructed in such aeway

that xdes is an attractive point t→∞ leads to x→ xdes = 0.

44
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5.3 The Proposed Control Algorithms

5.3.1 First Order Sliding Mode Control

5.3.1.1 2DOF Systems

Step 1:

The model of 2DOF underactuated systems can be described as:

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f2 + b2(x)u

(5.1)

Define the transformation:

z1 = x1 −
∫∫

(f1 + b1u− x3)dt

z2 = x2 −
∫

(f1 + b1u− x3)dt

z3 = x3

z4 = x4

(5.2)

Using the transformation (5.2), the system (5.1) can be written in the following

form:

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = f2 + b2u

(5.3)

Step 2:

Choose the sliding manifold s1 = z1 + 3z2 + 3z3 + z4, the time derivative of sliding

manifold becomes:

ṡ1 = ż1 + 3ż2 + 3ż3 + ż4

ṡ1 = z2 + 3z3 + 3z4 + f2 + b2u
(5.4)
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Choose u = 1
b2

(−z2− 3z3− 3z4− f2− k1sign(s1)− k2s1), then ṡ1 = −k1sign(s1)−

k2s1, and lyapunov stability:

V =
1

2
s2

1

V̇ = −k1|s1| − k2s
2
1 ≤ 0

(5.5)

Step 3:

Let z5 =
∫∫

(f1 + b1u− x3)dt and z6 =
∫

(f1 + b1u− x3)dt, then:

ż5 = z6

ż6 = f1 + b1u− z3 − v + v

ż6 = f1 + b1u− z3 + v − ṽ − v̂

(5.6)

Choose the sliding manifold s2 = z5 + z6, the time derivative of sliding manifold

becomes:

ṡ2 = ż5 + ż6

ṡ2 = z6 + f1 + b1u− z3 + v − ṽ − v̂
(5.7)

Choose v = −z6 − f1 − b1u+ z3 − k3sign(s2) + v̂ then ṡ2 = −k3sign(s2)− ṽ, and

lyapunov stability:

V1 =
1

2
s2

2 +
1

2
ṽ2 (5.8)

After some manipulation:

V̇ = −k3|s2| − k4ṽ
2

˙̃v = s2 − k4ṽ

˙̂v = −(s2 − k4ṽ)

(5.9)
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Step 4:

The overall system can be written as:

ż1 = z2e

ż2 = z3e

ż3 = z4e

ż4 = f2 + b2u

ż5 = z6

ż6 = f1 + b1u− z3 + v − ṽ − v̂

(5.10)

The states xh (h = 1, 2, 3, 4) in the term of zi (i = 1, 2...6) can be written as:

x1 = z1 + z5

x2 = z2 + z6

x3 = z3

x4 = z4

(5.11)

5.4 Application to Underactuated Mechanical

Systems

5.4.1 Cart-Pole System

The proposed control scheme is now used to stabilize an cart-pole system as

considered in [63]. It is an underactuated mechanical system with 2DOF. The

dynamic of the system discussed in (3.3.1).
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Figure 5.1: Closed loop response of cart-pole system corresponds to initial
condition (x1(0), ..., x4(0)) = (0.1, 0.2, 0.1, π/2), (c) Time history of control

input u, v and sliding surfaces s1, s2

5.4.2 Adaptive Sliding Mode Control

5.4.2.1 2DOF Systems

Step 1:

The model of 2DOF underactuated systems can be described as:

eẋ1 = x2

eẋ2 = f1 + b1(x)u+ d1(x, t)

eẋ3 = x4

eẋ4 = f2 + b2(x)u+ d3(x, t)

(5.12)
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Eq (5.12) can be written as:

ẍ1 = f1 + b1(x)u+ d1(x, t)e

ẍ3 = f2 + b2(x)u+ d3(x, t)
(5.13)

we define Q = [x1 x3]T ,e Q̇ = [ẋ1 ẋ3]T ,e Q̈ = [ẍ1 ẍ3]T e

F (x) = [f1(x) f2(x)]T ,eB(x) = [b1(x) b2(x)]T , the system (5.13) can be written as:

Q̈ = F (x) +B(x)u+ di(x, t) (5.14)

add and subtract v = [0 u2]T in (5.14) to get:

Q̈ = F (x) +H(x)w − v + di(x, t) (5.15)

where, H(x)=

b1 0

b2 1

 such that H−1(x) exist and w =

 u
u2

.

v = [0 u2]T is unknown input vector and will computed it adaptively, v̂ be the

estimate of v and ṽ be the error of estimation, ṽ = v− v̂. Then system (5.15) can

be written as:

Q̈ = F (x) +H(x)w − ṽ − v̂ + di(x, t) (5.16)

Step 2:

Choose the sliding surface: S =

s1

s2

 =

x1 + x2

x3 + x4

=Q+ Q̇

Then Ṡ = Q̇+ Q̈ = Q̇+ F (x) +H(x)w − ṽ − v̂ + di(x, t)

Choose w = −{H−1(x)Q̇+ F (x)− v̂ +KS +Ksign(S)}

so:

w1 = −{H−1(1, 1)x2 +H−1(1, 2)x4+f1(x)− v̂1 +K1s1 +K2sign(s1)}

w2 = −{H−1(2, 1)x2 +H−1(2, 2)x4+f2(x)− v̂2 +K3s2 +K4sign(s2)}

K = diag{k1, k2}

Ṡ = −KS −Ksign(S)− ṽ + di(x, t) (5.17)
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and:

ṡ1 = −K1s1 −K2sign(s1)− ṽ1 + d1(x, t)

ṡ2 = −K3s2 −K4sign(s2)− ṽ2 + d3(x, t)
(5.18)

Step 3:

Choose a Lyapunov function V = 1
2
STS + 1

2
ṽTL−1ṽ, where L is 2 × 2 positive

definite matrix. Then

V̇ = ST Ṡ + ṽTL−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ṽTL−1 ˙̃v

V̇ = −KSTS −K|S|+ ṽT{L−1 ˙̃v − S}+ STdi(x, t)

By choosing

˙̃v = LS

˙̂v = −LS

We get

V̇ = ST Ṡ + ṽT ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ṽT−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ ṽT{−1 ˙̃v − S}

V̇ = −KSTS −K|S|+ STDo ≤ 0 (5.19)

If K > Do then Eq.(5.19) confirms that S → 0. Since S =

s1

s2

 =

x1 + x2

x3 + x4

→ 0

and S is Hurwitz
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5.4.2.2 3DOF Systems

Step 1:

The model of 3DOF underactuated systems can be described as:

ẋ1 = x2e

ẋ2 = f1 + b1(x)u+ d1(x, t)e

ẋ3 = x4e

ẋ4 = f2 + b2(x)u+ d2(x, t)

ẋ5 = x6

ẋ6 = f3 + b3(x)u+ d3(x, t)

(5.20)

Eq (5.20) can be written as:

ẍ1 = f1 + b1(x)u+ d1(x, t)

ẍ3 = f2 + b2(x)u+ d2(x, t)

ẍ5 = f3 + b3(x)u+ d3(x, t)

(5.21)

we define Q = [x1 x3 x5]T ,e Q̇ = [ẋ1 ẋ3 ẋ5]T ,e Q̈ = [ẍ1 ẍ3 ẍ5]T e

F (x) = [f1(x) f2(x) f3(x)]T ,eB(x) = [b1(x) b2(x) b3(x)]T , the system (5.21) can

be written as:

Q̈ = F (x) +B(x)u+ di(x, t)e (5.22)

add and subtract v = [0 u2 u3]T in (5.22) to get:

Q̈ = F (x) +H(x)w − v + di(x, t) (5.23)

where, H(x)=


b1 0 0

b2 1 0

b3 0 1

 such that H−1(x) exist and w =


u

u2

u3

.

v = [0 u2 u3]T is unknown inputs vector and will computed it adaptively, v̂ be the

estimate of v and ṽ be the error of estimation, ṽ = v− v̂. Then system (5.23) can
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be written as:

Q̈ = F (x) +H(x)w − ṽ − v̂ + di(x, t)e (5.24)

Step 2:

Choose the sliding surface: S =


s1

s2

s3

 =


x1 + x2

x3 + x4

x5 + x6

=Q+ Q̇

Then Ṡ = Q̇+ Q̈ = Q̇+ F (x) +H(x)w − ṽ − v̂ + di(x, t)

Choose w = −{H−1(x)Q̇+ F (x)− v̂ +KS +Ksign(S)}

so:

w1 = −{H−1(1, 1)x2 +H−1(1, 2)x4 +H−1(1, 3)x6+f1(x)− v̂1}

eeee −K1s1 −K2sign(s1)

w2 = −{H−1(2, 1)x2 +H−1(2, 2)x4 +H−1(2, 3)x6+f2(x)− v̂2}

eeee −K3s2 −K4sign(s2)

w3 = −{H−1(3, 1)x2 +H−1(3, 2)x4 +H−1(3, 3)x6+f3(x)− v̂3}

eeee −K5s3 −K6sign(s3)

K = diag{k1, k2, k3}

Ṡ = −KS −Ksign(S)− ṽ + di(x, t) (5.25)

and:

ṡ1 = −K1s1 −K2sign(s1)− ṽ1 + d1(x, t)

ṡ2 = −K3s2 −K4sign(s2)− ṽ2 + d2(x, t)

ṡ3 = −K5s3 −K6sign(s3)− ṽ3 + d3(x, t)

(5.26)

Step 3:

Choose a Lyapunov function V = 1
2
STS + 1

2
ṽTL−1ṽ, where L is 3 × 3 positive

definite matrix. Then

V̇ = ST Ṡ + ṽTL−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ṽTL−1 ˙̃v

V̇ = −KSTS −K|S|+ ṽT{L−1 ˙̃v − S}+ STdi(x, t)
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By choosing

˙̃v = LS

˙̂v = −LS

We get

V̇ = ST Ṡ + ṽT ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ṽT−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ ṽT{−1 ˙̃v − S}

V̇ = −KSTS −K|S|+ STDo ≤ 0 (5.27)

If K > Do then Eq.(5.27) confirms that S → 0. Since S =


s1

s2

s3

 =


x1 + x2

x3 + x4

x5 + x6


→ 0 and S is Hurwitz.

Similarly for nDOF:

Q̈ = F (x) +H(x)w − ṽ − v̂ + di(x, t) (5.28)

where, H(x)=



h1

h3

h5

...

h2n−1


=



b1(x) 0 0 . . . 0

b3(x) 1 0 . . . 0

b5(x) 0 1 . . . 0
...

...
... . . .

b2n−1(x) 0 0 0 1


such that H−1(z) exist.

Choose the sliding surface: S =


s1

s3

...

sn

 =


x1 + x2

x3 + x4

...

x2n−1 + x2n

=Y + Ẏ

Then Ṡ = Q̇+ Q̈ = Q̇+ F (x) +H(x)w − ṽ − v̂ + di(x, t)

Choose w = −{H−1(x)Q̇+ F (x)− v̂ +KS +Ksign(S)}

so:

w1 = −{H−1(1, 1)x2 +H−1(1, 2)x4 + . . .+H−1(1, n)x2n+f1(x)
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−v̂1 +K1s1 +K2sign(s1)}

w2 = −{H−1(2, 1)x2 +H−1(2, 2)x4 + . . .+H−1(2, n)x2n+f2(x)

−v̂2 +K3s2 +K4sign(s2)}
...

wn = −{H−1(n, 1)x2 +H−1(n, 2)x4 + . . .+H−1(n, n)x2n+fn(x)

−v̂n +K2n−1sn +K2nsign(sn)}

K = diag{k1, k2, . . . , kn}

Ṡ = −KS −Ksign(S)− ṽ + di(x, t) (5.29)

and:

ṡ1 = −K1s1 −K2sign(s1)− ṽ1 + d1(x, t)

ṡ2 = −K3s2 −K4sign(s2)− ṽ2 + d2(x, t)

...

ṡn = −K2n−1sn −K2nsign(sn)− ṽn + dn(x, t)

(5.30)

Choose a Lyapunov function V = 1
2
STS + 1

2
ṽTL−1ṽ, where L is n × n positive

definite matrix. Then

V̇ = ST Ṡ + ṽTL−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ṽTL−1 ˙̃v

V̇ = −KSTS −K|S|+ ṽT{L−1 ˙̃v − S}+ STdi(x, t)

By choosing

˙̃v = LS

˙̂v = −LS

We get

V̇ = ST Ṡ + ṽT ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ṽT−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ + di(x, t)}+ ṽT{−1 ˙̃v − S}

V̇ = −KSTS −K|S|+ STDo ≤ 0 (5.31)
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If K > Do then Eq.(5.31) confirms that S → 0. Since S =


s1

s2

...

sn

 =


x1 + x2

x3 + x4

...

x2n−1 + x2n

 → 0 and S is Hurwitz.

5.5 Application to Underactuated Mechanical

Systems

Case 1: Simulation results without external disturbances.

5.5.1 Overhead Crane System

The proposed control scheme is now used to stabilize an overhead crane system as

considered in [63]. It is an underactuated mechanical system with 2DOF.
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(b) Sliding surfaces and Control effort

Figure 5.2: Closed loop response of overhead crane system ,(a) Time response
of system states corresponds to initial condition (x1(0), ..., x4(0)) = (0, 0, 0, 0)
(b) Time response of sliding surfaces s1, s2 and Time history of control inputs

w1 = u and w3
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5.5.2 Double Inverted Pendulum System

The proposed control scheme is now used to stabilize an double inverted pendulum

system as considered in [64]. It is an underactuated mechanical system with 3DOF.

This system consist of two pendulums link together on a moving cart as is shown

in Fig (5.3). The whole system consist of three subsystems, which has pendulum

1, pendulum 2 and cart. The dynamic of the system as given in [64].

Figure 5.3: Double Inverted Pendulum System

From Fig (5.3), θ1 is the angle of pendulum 1 and θ2 is the angle of pendulum 2,

y = z is the cart position, u is the control force, here m1,m2,m3 is the cart, the

pendulum 1 and the pendulum 2 masses respectively and L2, L3 is the length of

the lower and upper pendulums respectively and l1, l2 is the respective lengths

from their center of masses . Let I2, I3 is the respective inertia of pendulum 1

and pendulum 2 respectively.

define the coordinates of center of masses: y1 =

y
0

, y2 =

y + l2 sin θ1

l2 cos θ1

, y3 =
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y + L2 sin θ1 + l3 sin(θ1 + θ2)

L2 cos θ1l3 cos(θ1 + θ2)

 and θ = [y θ1 θ2]T , the total kinetic energy can

be written as: K = 1
2
θ̇T θ̇, where M is the 3× 3 symmetric matrix.

M11 = m1 +m2 +m3,

M22(θ2) = I2 + I3 +m2l
2
2 +m3L

2
2 +m3l

2
3 + 2m3L2l3 cos θ2

M33 = I3 +m3l
2
3

M12(θ1, θ2) = M21 = (m2l2 +m3L2) cos θ1 +m3l3 cos(θ1 + θ2)

M13(θ1, θ2) = M31 = m3l3 cos(θ1 + θ2)

M23(θ2) = m32 = (M3l
2
3 +m3l3L2) cos θ2 + I3

Therefore:

K = 1
2
M11ż

2 + 1
2
M22(θ2)θ̇1

2
+ 1

2
M33θ̇2

2
+M12(θ1, θ2)ẋθ̇1 +M13(θ1, θ2)ẋθ̇2

+M23(θ2)θ̇1θ̇2

The total potential energy is:

V = (m2l2 +m3L2)g cos θ1 +m3l3g cos(θ1 + θ2)

Then Lagrangian is:

L = K − V = K = 1
2
M11ż

2 + 1
2
M22(θ2)θ̇1

2
+ 1

2
M33θ̇2

2
+M12(θ1, θ2)ẋθ̇1

+M13(θ1, θ2)ẋθ̇2 +M23(θ2)θ̇1θ̇2 − (m2l2 +m3L2)g cos θ1 +m3l3g cos(θ1 + θ2)

Then Euler-Lagrange equation becomes: d
dt
∂L
∂θ̇
− ∂L

∂θ
= F gives that:

M11z̈ +M12θ̈1 +M13θ̈2 = u (5.32)

M12z̈ +M22θ̈1 +M23θ̈2 + {k sin θ1 +m3l3 sin(θ1 + θ2)}żθ̇1

+ {m3l3 sin(θ1 + θ2)}żθ̇2 + kg sin θ1 +m3l3g sin(θ1 + θ2) = 0

where k = (m2l2 +m3L2) (5.33)

M13z̈ +M23θ̈1 +M33θ̈2 + {2m3l3L2 sin θ2}θ̇2
1 + {m3l3 sin(θ1 + θ2)}żθ̇1

+ {m3l3 sin(θ1 + θ2)}żθ̇2 + {m3l3 sin(θ1 + θ2)}θ̇1θ̇2 +m3l3g sin(θ1 + θ2) = 0

(5.34)
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Equation (5.32)-(5.34) can be expressed as:

M11z̈ +M12θ̈1 +M13θ̈2 = u

M12z̈ +M22θ̈1 +M23θ̈2 + d2 + h2 = 0

m13z̈ +M23θ̈1 +M33θ̈2 + d3 + h3 = 0

(5.35)

Where

d2 = {k sin θ1 +m3l3 sin(θ1 + θ2)}żθ̇1 + {m3l3 sin(θ1 + θ2)}żθ̇2

h2 = kg sin θ1 +m3l3g sin(θ1 + θ2, where, k = (m2l2 +m3L2)

d3 = {2m3l3L2 sin θ2}θ̇2
1 + {m3l3 sin(θ1 + θ2)}żθ̇1 + {m3l3 sin(θ1 + θ2)}żθ̇2

+ {m3l3 sin(θ1 + θ2)}θ̇1θ̇2

h3 = m3l3g sin(θ1 + θ2)

Solving the equation (5.35) we have

z̈ = −m12

m11

θ̈1 −
M13

M11

θ̈2 +
1

M11

u

M̄11θ̈1 + M̄12θ̈2 = −M12

M11

u− d2 − h2

M̄12θ̈1 + M̄22θ̈2 = −M13

M11

u− d3 − h3

(5.36)

where M̄11 = (M22 − M12
2

M11
), M̄12 = (M23 − M12M13

M11
) and M̄22 = (M33 − M13

2

M11
)

Equation (5.36) can be written further as:

z̈ = −M12

M11

θ̈1 −
M13

M11

θ̈2 +
1

M11

u

¯̄M11θ̈1 = u(
M12M̄22 − M̄12M13

M11

) + d̄2 + h̄2 − d̄3 − h̄3

¯̄M11θ̈2 = u(
M̄11M13 − M̄12M12

M11

)− ¯̄d2 − ¯̄h2 + ¯̄d3 + ¯̄h3

(5.37)

where

d̄2 = M̄22d2, h̄2 = M̄22h2, d̄3 = M̄12d3 and h̄3 = M̄12h3

¯̄d2 = M̄11d2, ¯̄h2 = M̄12h2, ¯̄d3 = M̄11d3, ¯̄d3 = M̄11d3, ¯̄h3 = M̄11h3 and ¯̄M11 =

M̄2
12 − M̄22M̄11
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From (5.37) we have the following expressions:

ÿ =
M12

M11
¯̄M11

{−d̄2 − h̄2 + d̄3 + h̄3}+
M13

M11
¯̄M11

{ ¯̄d2 + ¯̄h2 − ¯̄d3 − ¯̄h3}

+
1

M11

{1 +M12M̄22 − M̄12M13 + M̄11M13 − M̄12M12}u

θ̈1 =
1
¯̄M11

{d̄2 + h̄2 − d̄3 − h̄3}+ u(
M12M̄22 − M̄12M13

M11
¯̄M11

)

θ̈2 =
1
¯̄M11

{− ¯̄d2 − ¯̄h2 + ¯̄d3 + ¯̄h3}+ u(
M̄11M13 − M̄12M12

M11
¯̄M11

)

(5.38)

we define the state matrix: x1 = y, x2 = ẏ, x3 = θ, x4 = θ̇1, x5 = θ2 and x6 = θ̇2

x = [x1 x2 x3 x4 x5 x6]T . so;

f1 =
M12

M11
¯̄M11

{−d̄2 − h̄2 + d̄3 + h̄3}+
M13

M11
¯̄M11

{ ¯̄d2 + ¯̄h2 − ¯̄d3 − ¯̄h3}

b1(x) =
1

M11

{1 +M12M̄22 − M̄12M13 + M̄11M13 − M̄12M12}

f2 =
1
¯̄M11

{d̄2 + h̄2 − d̄3 − h̄3}

b2(x) = (
M12M̄22 − M̄12M13

M11
¯̄M11

)

f3 =
1
¯̄M11

{− ¯̄d2 − ¯̄h2 + ¯̄d3 + ¯̄h3}

b3(x) = (
M̄11M13 − M̄12M12

M11
¯̄M11

)

(5.39)

The state space representation can be written as:

ẋ1 = x2e

ẋ2 = f1 + b1(x)ue

ẋ3 = x4

ẋ4 = f2 + b2(x)ue

ẋ5 = x6e

ẋ6 = f3 + b3(x)ue

(5.40)

The physical parameters of the Double Inverted Pendulum as:

m1 = m2 = m3 = 1, l2 = l3 = 0.75, I2 = 4
3
m2l

2
2, I3 = 4

3
m3l

2
3, g = 9.8
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(c) Control effort and disturbances

Figure 5.4: Closed loop response of Double Inverted Pendulum system
,(a) Time response of system states corresponds to initial condition
(x1(0), ..., x6(0)) = (−0.5, 1, 0.2, 0.4,−0.8, 0.2) (b) Applied disturbances d1 =
2sin(0.5πt) + 0.1x2, d2 = 3sin(0.5πt) + sin(x3)x

2
4 and d3 = 3sin(0.4πt) +

sin(x5)x5x6 from t = 10(s) to t = 15(s) (c) Time response of sliding surfaces
s1, s2 , s3 and Time history of control inputs w1 = u, w2 and w3



Chapter 6

Conclusion and Future Work

In this research work comprehensive robust control techniques proposed for UMS

on the basis of backstepping, feedback linearization, sliding mode control. the

proposed techniques provides a control problem for UMS.

1. Standard First Order SMC for UMSs (FOSMC).

2. Adaptive SMC for UMSs (ASMC).

3. Adaptive Backstepping for UMSs (AB).

4. Input/Output Feedback linearization Control based on lyapunov theory

(IOFL-LT) and based on integral sliding mode control (IOFL-ISMC) for

UMSs.

The above control techniques applied to the following underactuated mechanical

systems;

1. Cart Pole system.

2. Overhead Crane system.
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3. TORA system.

4. Double Inverted Pendulum system.

6.1 Performance Analysis

The overall performance analysis is summarized in the form of Table 6.1, based

on different features in the simulation results. Having analyzed, it was decided

that ASMC carries substantial marks in case of robustness and applicable to

nDOF underactuated mechanical systems. However, in case of fast convergence,

the IOFL-LT and IOFL-ISMC can be preferred whereas IOFL-LT suffers from

robustness issues. The named AB exhibits high control effort. In case of FOSMC

dur to transformation the dimension of system increases. According to the

attributes presented in Table 6.1, it can be claimed that ASMC proves itself to

be an appealing control protocol for the class of underactuated systems.
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Table 6.1: Comparative analysis IOFL-LT, IOFL-ISMC, AB, FOSMC and ISMC.

Attributes IOFL-LT IOFL-ISMC AB FOSMC ISMC

4-6 sec

Settling Time 2.5-4.5 sec 1.8-1.9 sec 3-5 sec 5-10 sec Increase when

DOF increase

Overshoot Medium Low High Medium Lowest

Control Effort Low Medium High Medium Lowest

Sliding surface No sliding surface No sliding surface sliding surface

convergence sliding surface converge to zero sliding surface converge to zero converge to zero

Robustness No Yes Yes Yes Yes

Application 2DOF 2DOF 2DOF 2DOF nDOF

Computational Low Medium High Highest High

Complexity
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6.2 Conclusion

In the past two decades the interest increasing in area of underactuated

mechanical systems. These systems have many diverse applications in the field of

aerospace, mechatronics, robotics, industry etc. This thesis presents a

stabilization of UMSs.The proposed methodologies is based on first order SMC,

adaptive SMC, adaptive backstepping, feedback linearization. In first order SMC

system is transformed, the dimensions of the system increases. In adaptive SMC

system is transformed through input transformation, contains a nominal part

and unknown term, unknown term is adaptively computed. In adaptive

backstepping we use the backstepping approach plus some unknown terms

adaptively computed. In feedback linearization control problem is computed

through feedback linearization plus layapunov function. The proposed techniques

is applied to UMS systems with 2 DOF. The adaptive SMC technique is

applicable to nDOF systems.

6.3 Future Research Directions

Based on such work, certain directions are suggested for future research.

1. Extension of the proposed techniques to the higher order UMSs.

2. Application of proposed algorithms to other UMSs.

3. Apply sliding mode observation techniques to UMSs.

4. Practical implementation of the proposed algorithms.
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[47] R. Xu and Ü. Özgüner, “Sliding mode control of a class of underactuated

systems,” Automatica, vol. 44, no. 1, pp. 233–241, 2008.

[48] G. J. Su, Q. L. Gong, and H. Y. Li, “Adaptive sliding-mode control based on

decoupled method for a class of underactuated system,” in 2017 36th Chinese

Control Conference (CCC). IEEE, 2017, pp. 639–643.

[49] W. Wang, J. Yi, D. Zhao, and D. Liu, “Design of a stable sliding-

mode controller for a class of second-order underactuated systems,” IEEE

Proceedings-Control Theory and Applications, vol. 151, no. 6, pp. 683–690,

2004.

[50] G. Zhao, C. Zhao, and J. Cheng, “Decoupled terminal sliding-mode control

for a class of under-actuated mechanical systems with hybrid sliding surfaces,”

International Journal of Innovative Computing, Information and Control,

vol. 10, no. 6, pp. 2011–2023, 2014.

[51] M. Idrees, S. Ullah, and S. Muhammad, “Sliding mode control design for

stabilization of underactuated mechanical systems,” Advances in Mechanical

Engineering, vol. 11, no. 5, p. 1687814019842712, 2019.

[52] Z.-P. Jiang, D. J. Hill, and Y. Guo, “Stabilization and tracking via output

feedback for the nonlinear benchmark system,” Automatica, vol. 34, no. 7,

pp. 907–915, 1998.

[53] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via approximate

input-output linearization: The ball and beam example,” IEEE Transactions

on Automatic Control, vol. 37, no. 3, pp. 392–398, 1992.



Bibliography 74

[54] M. W. Spong, “The swing up control problem for the acrobot,” IEEE Control

Systems Magazine, vol. 15, no. 1, pp. 49–55, 1995.

[55] J. Zhao and M. W. Spong, “Hybrid control for global stabilization of the

cart–pendulum system,” Automatica, vol. 37, no. 12, pp. 1941–1951, 2001.

[56] Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu, “Nonlinear coupling

control laws for an underactuated overhead crane system,” IEEE/ASME

Transactions on Mechatronics, vol. 8, no. 3, pp. 418–423, 2003.

[57] W. Zhong and H. Rock, “Energy and passivity based control of the double

inverted pendulum on a cart,” in Proceedings of the 2001 IEEE International

Conference on Control Applications (CCA’01)(Cat. No. 01CH37204). IEEE,

2001, pp. 896–901.

[58] X.-Z. Lai, J.-H. She, S. X. Yang, and M. Wu, “Comprehensive unified control

strategy for underactuated two-link manipulators,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp.

389–398, 2008.

[59] T. Albahkali, R. Mukherjee, and T. Das, “Swing-up control of the pendubot:

an impulse–momentum approach,” IEEE Transactions on Robotics, vol. 25,

no. 4, pp. 975–982, 2009.

[60] R. Jafari, F. B. Mathis, and R. Mukherjee, “Swing-up control of the acrobot:

An impulse-momentum approach,” in Proceedings of the 2011 American

Control Conference. IEEE, 2011, pp. 262–267.

[61] M. T. Ravichandran and A. D. Mahindrakar, “Robust stabilization of a

class of underactuated mechanical systems using time scaling and lyapunov

redesign,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp.

4299–4313, 2011.

[62] Y.-F. Chen and A.-C. Huang, “Controller design for a class of underactuated

mechanical systems,” IET Control Theory & Applications, vol. 6, no. 1, pp.

103–110, 2012.



Bibliography 75

[63] A.-C. Huang, Y.-F. Chen, and C.-Y. Kai, Adaptive Control of Underactuated

Mechanical Systems. World Scientific, 2015.

[64] Q. Khan, “Stabilization of underactuated mechanical system using adaptive

sliding mode control,” Ph.D. dissertation, CAPITAL UNIVERSITY, 2018.


	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background and Motivation
	1.2 Modeling of Underactuated Mechanical   Systems
	1.3 Problem Statement and Research Objectives
	1.4 Thesis Organization

	2 Literature.Review
	2.1 Introduction
	2.2 Theoretical Challenges in the Controleof   Underactuated Mechanical Systems
	2.3 Control Design Approaches for UMS
	2.4 Examples Underactuated Mechanical   Systems
	2.4.1 Acrobot and Pendubot
	2.4.2 Cart-Pole System
	2.4.3 Ball and Beam System
	2.4.4 Translational Oscillator with Rotational Actuator   System (TORA)


	3 Stabilization of Underactuated Systems: Feedback Linearization Technique
	3.1 Problem Statement
	3.2 The Proposed Control Algorithms
	3.2.1 First Method

	3.3 Application to Underactuated Mechanical  Systems
	3.3.1 Cart-Pole System
	3.3.2 Second Method

	3.4 Application to Underactuated Mechanical  Systems
	3.4.1 Cart-Pole System
	3.4.2 Cart-Pole System


	4 Stabilization of Underactuated Systems: Adaptive Backstepping Technique
	4.1 Control Problem
	4.2 The Proposed Control Algorithm
	4.3 Application to Underactuated Mechanical   Systems
	4.3.1 Overhead Crane System
	4.3.2 TORA System


	5 Stabilization of Underactuated Systems: Sliding Mode Control
	5.1 Introduction
	5.2 Problem Statement
	5.3 The Proposed Control Algorithms
	5.3.1 First Order Sliding Mode Control
	5.3.1.1 2DOF Systems


	5.4 Application to Underactuated Mechanical   Systems
	5.4.1 Cart-Pole System
	5.4.2 Adaptive Sliding Mode Control
	5.4.2.1 2DOF Systems
	5.4.2.2 3DOF Systems


	5.5 Application to Underactuated Mechanical   Systems
	5.5.1 Overhead Crane System
	5.5.2 Double Inverted Pendulum System


	6 Conclusion and Future Work
	6.1 Performance Analysis
	6.2 Conclusion
	6.3 Future Research Directions

	Bibliography

